
J Comput Virol (2009) 5:199–207
DOI 10.1007/s11416-009-0121-9

ORIGINAL PAPER

Code mutation techniques by means of formal grammars
and automatons

Pavel V. Zbitskiy

Received: 21 November 2008 / Revised: 23 January 2009 / Accepted: 25 March 2009 / Published online: 15 April 2009
© Springer-Verlag France 2009

Abstract The paper describes formalization of existing
code mutation techniques widely used in a viruses (polymor-
phism and metamorphism) by means of formal grammars
and automatons. New model of metamorphic viruses and
new classification of this type of viruses are suggested. The
statement about undetectable viruses of this type is proved.
In that paper are shown iterative approach toward construct
complex formal grammars from the simplest initial rules for
building metamorphic generator. Also there are some sam-
ples of applied usage of formal grammar model. The expe-
riment for system call tracing of some viruses and worms
is described. Possibility of using system call sequences for
viruses detecting is shown.

1 Introduction

The aims of this work are considering of existing models
of polymorphic and metamorphic viruses and perfecting this
models in keeping with really existing variations of these
types of viruses. The statement of undetectable metamorphic
viruses is discussed.

For the first time, formal grammars and automatons used
for description of code mutation techniques in [1]. Simple
polymorphic generator has been described and automaton
for detect any exits from this generator has been written.
Let’s introduce this sample in use into formal grammar and
code transformation.

Grammar G =(N , T, P, S) is quad where T ={a, b, c, d,

x, z} is terminal alphabet which consists of x86 instructions.

P. V. Zbitskiy (B)
Chelyabinsk State University, 129 Bratiev Kashirinih st,
Chelyabinsk, Russia
e-mail: pavel.zbitskiy@gmail.com

a, b, c, d is garbage instructions, x, z is decryptor
instructions. N = {A, B, S} is non-terminal alphabet. S is
initial state. Symbols of non-terminal alphabet uses for rules
linkage of rewriting system

P =
⎧
⎨

⎩

S → aS|bS|cS|d S|x A
A → a A|bA|cA|d A|zB
B → aB|bB|cB|d B|ε

aabcxddbazbdac is sample of the output generator. The
[1] also provides mechanism for detect these polymorphic
engine. That is a building of an appropriate automaton.
Figure 1 illustrates it.

Detecting procedure works as follows: we start from
initial state S and move into A when detect x instruction
and move on into terminal state B when detect z instruction
on automaton input. If terminal state is reached we assume
that valid decryptor is detected. But false-positive matches
possible if instructions garbage set is incomplete.

The [2] is an establish links between metamorphism
and formal grammars by implementation of POC_PBMOT
metamorphic engine. Metagrammar, which underlies POC_
PBMOT, describes rules of transformation by propagation.
Undetectable of POC_PBMOT is proven formally.

But [1,2] do not contains formalization of “classic” meta-
morphism (equivalent instructions replacement and code
compression). This paper fully describes this technique by
means of formal grammars and automatons.

2 Semi-metamorphic viruses

Let’s consider polymorphic virus, which uses code obfus-
cation technique such as equivalent instruction, replaced by
propagation. It means that virus contains encrypted skele-
ton and this skeleton uses when new virus copy is produced.

123

200 P. V. Zbitskiy

Fig. 1 Automaton for detecting simple polymorphic engine

This virus can be called “semi- metamorphic” because it uses
metamorphic attributable technique and also uses encrypted
part like polymorphic viruses.

The next sample illustrates it. Let we need to create fol-
lowing program:
push 0
push 4
call ExitWindowsEx
push 0
call ExitProcess

Now we will construct a grammar which will describe
metamorphic transformation of this code. For simplicity, let
addresses to use API-functions which has been already
resolved.

Note G = (N , T, P, S)—formal grammar (base con-
cepts of grammars and automatons can be found, for exam-
ple, in [3]), T – terminal alphabet, consisted of instruction
x86 processor (for instance) and a, b, c, d—some garbage
instructions. N—non-terminal alphabet and S—start sym-
bol. Let x ⊕y—concatenation of x and y instructions. EW —
address of ExitWindowsEx function, E P—address of Exit-
Process function. Thus, our grammar can be written as a set
of rules:

1. S → aS|bS|cS|d S|(push 0)A|(xorebx, ebx ⊕ push
ebx)A| (sub esp, 4 ⊕ mov [esp], 0)A

2. A → a A|bA|cA|d A|(push 4)B|(mov eax, N ⊕ xor
eax,< N xor 4 > ⊕push eax)B

3. B → aB|bB|cB|d B|(call EW)C |(push $)+10⊕ jmp
EW)C | (mov esi ⊕ call esi)C

4. C → aC |bC |cC |dC |(push 0)D|(xor ebx, ebx ⊕ push
ebx)D|(sub esp, 4 ⊕ mov [esp], 0)D

5. D → aD|bD|cD|d D|(call E P)E |(push $+11⊕push
E P ⊕ ret)E |(mov esi ⊕ call esi)E

6. E → aE |bE |cE |d E |ε

We can see two main defects of generator built by this
grammar: a big size of generator (one instruction—one rule)
and “simplicity” of grammar. Let’s rewrite some rules:

1. S → X A
4. C → X D

7. X → aX |bX |cX |d X |(push 0)|(xor ebx, ebx ⊕ push
ebx)| (sub esp, 4 ⊕ mov [esp], 0)

This is non-regular grammar, but language decision prob-
lem (either w ∈ L(G) or not, where L(G)—language) for
this grammar can be resolved. Let’s complicate model.

G = (N , T, P, S)—grammar, which describes algorithm
of a virus. Rewriting system of this grammar is

P =

⎧
⎪⎪⎨

⎪⎪⎩

S → A1 A
A → B1 B

. . .

X → X1 X

.

In this case output program seems as sequence A1 B1 . . .
X1 and A1, B1, . . . , X1 can be interpreted as internal lan-
guage by which program has been written. Thereby, rules of
this rewriting system sets a skeleton of program. Now we
introduce a second grammar G1 = (N1, T1, P1, S1) which
describes translation of skeleton symbols into a processor
instructions or a block of instructions. For example,

P1=
⎧
⎨

⎩

A1 → push 0|(xor ebx, ebx ⊕ push ebx)

. . .

X1 → (mov eax, E P⊕call eax)|(mov ebx, E P⊕call ebx)

Grammar G1 describes mutation from skeleton into con-
crete instructions at the first step of evolution. Grammar G2—
at the second step and etc. How to complicate this model from
practical point of view? First of all, we can change grammars
G1, G2 etc by each mutation. On the one hand, it can be
reached, for instance, by deleting of some rules from G1 for
getting G2. But on the other hand, when we write our pro-
gram by internal language two levels of code transformation
exists: each of internal commands can be interpreted of dif-
ferent instructions sets of real processor and each instruction
can be interpreted of these equivalents.

3 General metamorphic engine

Classic metamorphic generator can be presented as bulky,
non-deterministic automata, because, all possible input char-
acters are specified for each state of automata. Figure 2 illus-
trates it.

There are formal description of the automata A = (Q, �,

δ, q0). Q = {q0} ∪ {x86 instructions}—set of states, � =
{x86 instructions}—input alphabet, δ : Q × � → Q—
the state-transition function. Input program is a some word
(chain) from �∗. Mutation in this case is a path of automata
q1q2 . . . qn is visited states by processing of input word.

However, function δ describes some formal grammar, this
grammar, as an automata, must be linked. Namely any
sequences of instruction could be deduced from initial state
q0.

123

Code mutation techniques by means of formal grammars and automatons 201

Fig. 2 Metamorphic generator modeled by automata

This grammar G = (N , T, P, q0) can be described as fol-
lowing. N = {q0, A, B, C . . .} is non-terminal alphabet, T =
{a1, a2, a3, . . . , z1} = {x86 instruction} is terminal alphabet
and q0 is start symbol. We can rewrite system in the following
form:

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 → AA|B B| . . . |Z Z
A → B B|CC | . . . |Z Z

. . .

Z → AA|B B|CC | . . . |Y Y
A → a1|a2| . . . |an

. . .

Z → z1|z2| . . . |zm

This rewriting system is build up in keep with following
reasons:

1. Each non-terminal symbol presents all variants of trans-
lation for some commands.

2. Double-entering of non-terminals into right side of rules
provides linkage of grammar (any code sequences can
be deduced).

This generator works with two steps: at first, chain of non-
terminals gets and secondly, the chain translated into proces-
sor instructions. For example:

q0 → B B → B DD → B DK K → B DK L L → · · · →
→ B DK L M N → b1d3k2l7m9n13

To summarize, we get context-free grammar, because we
build it over automata. Main problem of considered gen-
erator is growing up of mutated code. Let’s consider one
approach to code compression. Assume X , Y , Z - x86 com-
mands and XY ≡ Z . Than rule XY → Z means that
instruction sequence XY compresses into Z . For example,

Fig. 3 Code compression part of automaton chart

X ≡ xor eax, eax , Y ≡ push eax , z = push 0 and P =⎧
⎪⎪⎨

⎪⎪⎩

M → X X
X → Y Y
Y → N N

XY → z
In this case generator output is of the following form:

M → X X → XY Y →
{

zY→zN N→···
XY N N→···

Mark, that both branches are semantically equivalent—
moving a zero at stack top.

How to interpret it by term of automaton? Consider a cer-
tain automaton with current state M . Symbol xor eax, eax
is input symbol. After that, automaton branchs move to X
state, which matches to some translation of xor eax, eax
instruction. The next input symbol is push eax . Automaton
could branchs to Y state or z state, which matches to push 0
instruction. State z is special state: when automaton gets to
z, automaton must discards previous state X from its path.
This idea matches to imaginary edge from M to z. Figure 3
illustrates it.

Thus, after adding rules of a new type, our grammar gets
type 0 of Chomsky classification. For grammars of this type,
language decision problem is undecided. That is if we have an
instance of viral code we couldn’t determinate predecessor
of this instance. Given fact confirms a possibility of making
undetected viruses.

4 Method limitations

At practice some limitation of discussed model exists.
At first, all used instructions (or kinds of instructions) must
predicted in grammar rules. Therefore, metamorphic gene-
rator will be huge. Secondary, rules of described grammar
presumes random garbage generation. So, after translation
input instruction engine saves “context” (register values) and
generates various garbage instructions so as “contexts” at the
beginning and ending of garbage code block are equal. Unfor-
tunately, these dummy code blocks can be found by static
analysis, as well as, algorithm of string search works. And

123

202 P. V. Zbitskiy

thirdly, these code mutation techniques are effective only for
“clean” code, without any hard points. I am speaking about
system calls.

5 Practical grammar usage

This chapter describes practical building of polymorphic
generator and its detector; both based on formal grammars
and automatons. Lets build simple polymorphic decryptor
such as following:

1. mov R1, len
2. mov R2, beg
3. xor [R2], key
4. add R2, 4
5. sub R1, 4
6. jnz step_3

Now we are going to describe rewriting system of a gram-
mar. Let rules X1 and X2 are corresponds to two first instruc-
tions. Order of these instructions is unimportant. For XOR
instruction let’s use following well-known equivalents: x1
xor x2 ≡ ¬(¬x1 xor x2) ≡ (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2).
Additionally let that generator can uses two forms of XOR
instruction: base addressing mode W1 and base-indexed
addressing mode W2. H1 and H2 rules describes cycle
organization and G is garbage generation rule. So rewriting
system looks as:

A → X B

B → Y4ε

X → X1 X2|X2 X1

X1 → G X1|mov R1, len|push len ⊕ pop R1|xor R1,

R1 ⊕ lea R1, [R1 + len]|sub R1, R1 ⊕ add R1, len

X2 → G X2|mov R2, beg|push beg ⊕ pop R2|xor R2,

R2⊕lea R2, [R2+beg]|sub R2, R2⊕add R2, beg

Y4 → GY4|W1|S4W4

W1 → GW1|xor [R2], key H1

W1 → not [R2] ⊕ xor [R2], key ⊕ not[R2] H1

W1 → mov R3, [R2] ⊕ not R3 ⊕ and R3, key ⊕ and [R2],
¬key ⊕ or [R2], R3 H1

H1 → G H1|add R2, 4 H2|sub R2, −4 H2

S4 → GS1|sub R2, 4|add R2, −4

W2 → GW2|xor [R1][R2], key H2

W2 → not [R1][R2]⊕xor [R1][R2], key⊕not[R1][R2] H2

W2 → mov R3, [R1][R2] ⊕ not R3 ⊕ and R3, key ⊕ and

[R1][R2],¬key ⊕ or [R1][R2], R3 H2

H2 → G H2|sub R1, 4⊕ jnz xxx |sub R1, 4⊕ j z yyy⊕ jmp xxx

H2 → add R1, −4⊕ jnz xxx |add R1, −4⊕ j z yyy⊕ jmp xxx

H2 → sub ecx, 3 ⊕ loop xxx ⇔ R1 ≡ ecx

Fig. 4 Samples of generated decryptors

Fig. 5 Automaton-detector

Let realize this generator with empty garbage rule. So,
this engine can generate 42 · (3 · 2 + 2 · 3) · 5 = 960 dif-
ferent decryptors without regard any register replacement.
Disassembled generator outputs seems as following (Fig. 4):

Automaton-detector that can detect any output of our
generator, presented in Fig. 5. This automaton analyzes
input instruction and moves into next state. Automaton
recognizes code sequence as decryptor when it reaches
finish state.

The automaton contains 28 states and can recognizes any
word-build by our simple context-free grammar. So, than
more complex originative grammar than more and more
complex automaton-detector. This is one way to design
“undetectable” code sequences. Another way is garbage
generation. When garbage rules are the same with payload
rules than automaton can loses main execution stream. Let’s
add following rules to generator:

G → G RBG1|G RBG2|G RBG3|G RBG4

G → mov R, imm|push imm ⊕ pop R|xor R,

R ⊕ lea R, [R + imm]|sub R, R ⊕ add R, imm

123

Code mutation techniques by means of formal grammars and automatons 203

Fig. 6 Sample of generated
decryptor and detector output

G RBGi is simple garbage instructions such as mov Reg,

Reg and etc. Now try to detect generator output (Fig. 6).
As we can see insignificant grammar change entails are

decreasing of detecting probability from 1 to 2
3 . But in spite

of this any polymorphic virus under like this decryptor can
be simply detected by system calls analysis.

6 Experiment: system calls tracing

This chapter describes experiment results of watching famous
virus behavior on computer with Windows XP SP2 with
the use of special program which intercepts system calls of
specified process and writes log. This is dynamic research
method. Propagation copies of one strain and different strains
of some viruses are considered. The next viruses and worms
had been analyzed: Bagle.a-z, Mimail.a-u, Tanatos.a-n and
Zmist. Really existing machine has been cloned and user
activity has been emulated. Additional information about
some of these viruses can be found in [4,5].

System calls log by default is very verbose. Appendix
A shows part of a log for process prologue. In the log can
be found process name, process ID, thread ID, system call
name, two return addresses, parameter names list and values
lists.

For research let’s use more compact view of system calls
log with syscall name and return addresses. These addresses
needed for determinate start of program without any OS ser-
vices actions (process creation and etc). To this effect used
the next fact: any process under Windows XP begins from
startup code from kernel32.dll. Operation system calls NtSet-
InformationThread before transfer control to executable file
entry point. Figures 7 and 8 illustrates it.

For comparison of system calls sequences let’s introduce
measure of distinction of these sequences. Function µ(x, y)

is number of different blocks of system calls in the log for
viruses x and y. Measure µ(x, y) = 0 means that viruses x
and y uses identical system calls. Of course, µ(x, x) = 0.
Computation of µ(x, y) can be based on any algorithm of
text file comparison such as realized in xdiff utility. In this

123

204 P. V. Zbitskiy

Fig. 7 Main thread startup code in kernel32.dll

Fig. 8 Appropriate system call for main thread startup in the log

instance algorithm of searching maximum subsequence from
first log in second log was implemented. Thus, block is a sys-
tem calls sequence which presence in first log but absence
in second log or vice versa. So measure µ(x, y) that shows
number of different blocks is express method of distinction
evaluation of system calls sequences.

Let’s begin research with Bagle. At first, we simply start
different strains of Bagle and save its activity into logs.
Namely we trace a first worm penetration on target system.
Table in Appendix B presents µ(x, y) values for Bagle.X.
As can seen Bagle.h is functional equivalent to Bagle.k,
Bagle.l is functional equivalent to Bagle.v, Bagle.n—Bagle.r
are nearly equivalent and Bagle.t is based on Bagle.a. Also
functional signature for detecting Bagle can be build. Clas-
sic approach presumes one signature per one strain of virus.
In functional signature case we can use one signature for
few strains. Experimental data shows that different strains of
Bagle.X contains a lot of similar system calls subsequences
when µ(x, y) < 40. So we can build up 1 functional sig-
nature for Bagle.a, Bagle.b and Bagle.t strains, 1 signature
for f, g, h, k, l, m, v strains, 1 signature for i, j strains and 1
signature for n, o, p, q, r, y strains. Thus we have 4 functional
signature instead of 18 classic signatures. Bagle.X perma-
nent activity also has been traced and results can be found at
Appendix C.

The next step is analogous system calls tracing for differ-
ent strains of Mimail worm. Measure values can be found in
Appendix D. This results confirms an efficiency of functional
signatures: 4 signatures (1 for Mimail.a-p except Mimail.i,
1 for Mimail.i, 1 for Mimail.r and 1 for Mimail.q-u except
Mimail.r) instead of 21 classic signatures. Also polymorphic
copies of Mimail.q has been researched. So all 50 gotten
copies has µ-values zero or two that matches to short blocks
replacing.

Appendix E presents measure values for different strains
of Tanatos worm. As can be seen all Tanatos strains has invari-
able system call sequences. All examined 50 polymorphic
copies of Tanatos.b has µ = 0.

Appendix F shows results of system calls tracing for Zmist
virus. Eight letters a-h matchs to eight different virus sam-
ples. Notepad.exe has been infected and the same application
activity has been performed. So, these measure values tells
that chosen measure is abortive or the simplest for code inte-
gration technique used by Zmist.

Thus system calls sequences can be used for detecting
poly- and metamorphic copies of one strain of viruses. In
this case usage of code mutation techniques there is no point
because of detecting occurs on operation system level. Sys-
tem calls sequences logically uses to detecting all strains of
one virus family because unionization virus exemplars into
one virus family occurs by functional similarity.

However, the problem is separation virus system calls
from general sequence of program system calls. Unique argu-
ments of system calls can be used but in this case functional
signature will be huge and this method is not always applica-
ble. Usage of single calls in functional signature is not usable
because false-positive operates is possible.

7 Conclusion and future work

The main method of detecting metamorphic viruses is beha-
vior analysis. Sorry to say, this method have a restriction –
a necessity of running dubious code. Alternative approach
is considered in [6–9]. These methods based on possibi-
lity of disassemble viral code. Authors also note that some
obfuscation tricks may be barriers for using of this methods.
Semi-metamorphic viruses, which considered above, don’t
require self disassemble possibility, because skeleton is con-
tained in the metamorphic generator.

Considered formalization very well describes code muta-
tion. But this is partially unfull because it descries only code
transformation without code executing environment. We can
perform any code transform, but system-depended points are
exist. There are sequences of system calls. This sequence can
be used for successful detection of formal undetected meta-
morphic viruses. Some methods for bridge over this restric-
tions are exists. For example, it may be garbage system calls
or function mutation technique.

A general application of metamorphism technique is crea-
ted of undetectable viruses. But peaceable adaptation for
metamorphism exists. Firstly, it may be a software water-
mark or fingerprint at processor instruction level for tracing
program owners. Secondly, metamorphism allows creating
fully different copy of a program when it expands by Internet.
In this case cracker could not create patch because each user
have unique copy of a program.

123

Code mutation techniques by means of formal grammars and automatons 205

Appendix A: System calls log sample

21:47:10 bagle.a.exe(976.320)
NtOpenKey[119](12) 77F5BBB4<=77F61BD3
0012F950: KeyHandle 0012FC94 -> 00000000
0012F954: DesiredAccess 80000000
0012F958: ObjectAttributes 0012FC24 ->

0012FC24: OBJECT_ATTRIBUTES
0012FC24: Length 00000018
0012FC28: RootDirectory 00000000
0012FC2C: ObjectName 0012FC3C ->

0012FC3C: UNICODE_STRING
0012FC3C: Length 00CE
0012FC3E: MaximumLength 02C6
0012FC40: Buffer 0012F95C ->

\Registry\Machine\Software\Microsoft\Windows NT\
CurrentVersion\Image File Execution Options\bagle.a.exe

0012FC30: Attributes 00000040
0012FC34: SecurityDescriptor 00000000
0012FC38: SecurityQualityOfService 00000000

21:47:10 bagle.a.exe(976.320)
NtQuerySystemInformation[173](16) 77F5BF14<=77F559C2
0012FA4C: SystemInformationClass 8
0012FA50: SystemInformation 0012FA9C
0012FA54: SystemInformationLength 0000002C
0012FA58: ReturnLength 00000000 ->

21:47:10 bagle.a.exe(976.320)
NtAllocateVirtualMemory[17](24) 77F5B554<=77F55BD5
0012FA44: ProcessHandle FFFFFFFF
0012FA48: BaseAddress 0012FB00
0012FA4C: ZeroBits 00000000
0012FA50: AllocationSize 0012FB2C -> 00100000
0012FA54: AllocationType 00002000
0012FA58: Protect 00000004

Appendix B: Bagle.X functional correlation
(for first execution on target computer)

X a b f g h i j k l m n o p q r t v y
a 0 26 121 121 119 126 126 121 120 123 112 116 116 111 115 3 120 113
b 26 0 135 134 134 128 129 134 136 128 135 125 126 136 126 24 136 130
f 121 135 0 1 4 51 52 4 22 28 76 70 70 76 71 128 21 64
g 121 134 1 0 5 52 53 5 22 29 77 71 71 77 70 128 22 63
h 119 134 4 5 0 52 54 0 20 25 73 78 68 73 69 127 20 63
i 126 128 51 52 52 0 2 53 53 61 47 45 46 48 47 128 53 44
j 126 129 52 53 54 2 0 57 54 61 35 33 32 36 35 128 54 32
k 121 134 4 5 0 53 57 0 20 25 73 68 68 73 69 127 20 63
l 120 136 22 22 20 53 54 20 0 15 70 63 65 71 66 126 0 66

m 123 128 28 29 25 61 61 25 15 0 89 85 85 87 86 128 15 84
n 112 125 76 77 73 47 35 73 70 89 0 4 6 2 7 116 64 20
o 116 125 70 71 78 45 33 68 63 85 4 0 2 6 3 117 59 19
p 116 126 70 71 68 46 32 68 65 85 6 2 0 4 1 119 61 20
q 111 136 76 77 73 48 36 73 71 87 2 6 4 0 5 118 63 21
r 115 126 71 70 69 47 35 69 66 86 7 3 1 5 0 119 62 19
t 3 24 128 128 127 128 128 127 126 128 116 117 119 118 119 0 127 115
v 120 136 21 22 20 53 54 20 0 15 64 59 61 63 62 127 0 66
y 113 130 64 63 63 44 32 63 66 84 20 19 20 21 19 115 66 0

123

206 P. V. Zbitskiy

Appendix C: Bagle.X functional correlation
(part of permanent activity)

X a b f g h i j k l m n o p q r t v y
a 0 5 138 130 139 132 136 139 139 132 135 137 137 135 137 3 139 138
b 5 0 131 133 133 133 130 134 132 125 130 132 132 130 133 16 132 134
f 138 131 0 5 11 48 48 14 10 17 90 93 91 90 93 125 10 109
g 130 133 5 0 14 48 48 11 8 17 93 94 94 93 94 125 8 112
h 139 133 11 14 0 47 47 5 13 20 87 90 89 87 90 126 13 107
i 132 133 48 48 47 0 6 49 49 51 30 35 36 31 36 130 49 38
j 136 130 48 48 47 6 0 49 49 51 18 23 24 19 24 112 49 26
k 139 134 14 11 5 49 49 0 13 22 92 93 91 92 93 127 12 113
l 139 132 10 8 13 49 49 13 0 15 53 54 53 53 54 125 0 56

m 132 125 17 17 20 51 51 22 15 0 70 76 63 70 78 132 15 76
n 135 130 90 93 87 30 18 92 53 70 0 9 11 2 11 119 47 22
o 137 132 93 94 90 35 23 93 64 76 9 0 8 11 2 120 49 22
p 137 132 91 94 89 36 24 91 53 63 11 8 0 9 6 121 48 21
q 135 130 90 93 87 31 19 92 53 70 2 11 9 0 9 120 48 23
r 137 133 93 94 90 36 24 93 54 78 11 2 6 9 0 121 49 23
t 3 16 125 125 126 130 112 127 125 132 119 120 121 120 121 0 128 126
v 139 132 10 8 13 49 49 10 0 15 47 49 48 48 49 128 0 55
y 138 134 109 112 107 38 26 113 56 76 22 22 21 23 23 126 55 0

Appendix D: Mimail.X functional correlation

X a b c d e f g h i j k l m n o p q r s t u
a 0 6 28 6 36 26 22 34 107 17 23 33 17 7 7 46 92 130 88 63 101
b 6 0 16 1 17 23 22 24 113 17 26 34 21 3 5 37 93 140 84 69 98
c 28 16 0 18 135 193 84 155 250 19 128 245 153 18 14 337 198 206 228 81 210
d 6 1 18 0 24 22 20 24 118 18 24 32 21 3 5 35 93 140 84 69 101
e 36 17 135 24 0 179 38 81 321 11 72 105 64 26 38 305 182 275 188 86 189
f 26 23 193 22 179 0 123 164 264 12 157 162 135 25 17 259 167 240 185 104 187
g 22 22 84 20 38 123 0 29 199 11 35 107 53 20 24 282 143 201 148 70 156
h 34 24 155 24 81 164 29 0 276 11 77 166 57 27 25 390 186 229 203 84 189
i 107 113 250 118 321 264 119 276 0 103 203 253 198 114 116 611 160 203 233 46 179
j 17 17 19 18 11 12 11 11 103 0 8 16 10 18 17 16 91 136 74 73 99
k 23 26 128 24 75 157 35 77 203 8 0 132 142 22 20 441 186 282 205 94 185
l 33 34 245 32 105 162 107 166 253 16 132 0 113 36 27 644 223 256 231 96 207

m 17 21 153 21 64 135 53 57 198 10 142 113 0 23 20 323 159 214 90 84 129
n 7 3 18 3 26 25 20 27 114 18 22 36 23 0 6 37 93 141 84 69 101
o 7 5 14 5 38 17 24 25 116 17 20 27 20 6 0 50 92 140 84 71 98
p 46 37 337 35 305 259 282 390 611 16 441 644 323 37 50 0 325 442 416 144 404
q 92 93 198 93 182 167 143 186 160 91 186 223 159 93 92 325 0 167 20 20 26
r 130 140 206 140 275 240 201 229 203 136 282 256 214 141 140 442 167 0 172 142 156
s 88 84 228 84 188 185 148 203 233 74 205 231 90 84 84 416 20 172 0 16 19
t 63 69 81 69 86 104 70 84 46 73 94 96 84 69 71 144 20 142 16 0 40
u 101 98 210 101 189 187 156 189 179 99 185 207 129 101 98 404 26 156 19 40 0

Appendix E: Tanatos.X functional correlation

X a b d e g i k l n
a 0 11 11 16 8 8 19 17 17
b 11 0 6 8 6 6 4 5 15
d 11 6 0 3 10 9 6 7 17
e 16 8 3 0 5 6 8 9 78
g 8 6 10 5 0 1 18 18 25
i 8 6 9 6 1 0 18 18 25
k 19 4 6 8 18 18 0 1 20
l 17 5 7 9 18 18 1 0 20
n 17 15 17 78 25 25 20 20 0

Appendix F: Zmist functional correlation

X a b c d e f g h
a 0 75 117 27 53 79 293 171
b 75 0 125 134 123 56 128 225
c 117 125 0 71 40 75 129 41
d 27 134 71 0 50 113 52 93
e 53 123 40 50 0 75 30 53
f 79 56 75 113 75 0 66 86
g 293 128 129 52 30 66 0 37
h 171 225 41 93 53 86 37 0

123

Code mutation techniques by means of formal grammars and automatons 207

References

1. Qozah. Polymorphism and grammars, 29A E-zine, 1999, #4
2. Filiol, E.: Metamorphism, formal grammars and undecidable code

mutation. In: Proceedings of World Academy of Science, Enginee-
ring and Technology (PWASET), vol. 20 (2007)

3. Jones, N.D.: Computability and Complexity. MIT Press, Cam-
bridge (1997)

4. Filiol, E.: Computer viruses: from theory to applications, 405 p.
Springer, France (2005)

5. Szor, P.: The Art of Computer: Virus Research and Defense, 744 p.
Symantec Press, USA (2005)

6. Bruschi, D., Martignoni, L., Monga, M.: Using Code Normalization
for Fighting Self-Mutating Malware, Security & Privacy, IEEE,
vol. 5, pp. 46–54 (2007)

7. Lakhotia, A., Kapoor, A., Uday E.: Are metamorphic viruses really
invincible? Virus Bulletin, pp. 5–7 (2004)

8. Lakhotia, A., Kapoor, A., Uday E.: Are metamorphic viruses really
invincible? Virus Bulletin, pp. 9–12 (2005)

9. Zhang, Q., Reeves, D.: MetaAware: identifying metamorphic mal-
ware. In: Proceedings of the 23rd Annual Computer Security Appli-
cations Conference, Miami Beach, Florida (2007)

123

	Code mutation techniques by means of formal grammarsand automatons
	Abstract
	1 Introduction
	2 Semi-metamorphic viruses
	3 General metamorphic engine
	4 Method limitations
	5 Practical grammar usage
	6 Experiment: system calls tracing
	7 Conclusion and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

